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completely integrable through the inverse scattering trans-
form (see, for example, [1, 11]) this allows us to study theIn this, the first of two papers on the numerical solution of the

sine–Gordon equation, we investigate the numerical behavior of a subsequent nonlinear evolution of the instabilities. There
double discrete, completely integrable discretization of the sine– are two interesting boundary value problems which can
Gordon equation. For certain initial values, in the vicinity of homo- be considered, the ‘‘infinite line’’ case with decaying initialclinic manifolds, this discretization admits an instability in the form

values, and the periodic boundary value problem. In theof grid scale oscillations. We clarify the nature of the instability
through an analytical investigation supported by numerical experi- infinite line case the instability results in solitons—the
ments. In particular, a perturbation analysis of the associated linear number depending on the amplitude of the initial values.
spectral problem shows that the initial values used for the numerical On the other hand, with periodic boundary values, the
experiments lie exponentially close to a homoclinic manifold.

instabilities are a manifestation of a ‘‘homoclinic’’ manifoldThis paves the way for the second paper where we use the non-
associated with the NLS equation. The dimension or com-linear spectrum as a basis for comparing different numerical

schemes. Q 1996 Academic Press, Inc. plexity of the homoclinic manifold depends on the number
of unstable modes which can be controlled by the ampli-
tude of the carrier wave. In this paper we consider the

1. INTRODUCTION periodic problem.
From a numerical point of view these instabilities proveAlthough Stokes published his famous work, On the

to be troublesome. In earlier work [13, 2] we showed thatTheory of Oscillatory Waves, in 1847 [19], it was only
initial data, which are nearby low dimensional homoclinicduring the 1960s that Benjamin [7] realized that the peri-
manifolds, may develop numerically induced spatial andodic Stokes wave on deep water is in fact, unstable (see
temporal chaos at intermediate levels of discretization. Thealso Whitham [20]). About the same time Zabusky and
chaos is not observed with integrable discretizations of theKruskal studied the Korteweg de Vries (KdV) equation
NLS equation and disappears (perhaps very slowly) from[21], a pioneering investigation that paved the way for the
the nonintegrable schemes as the discretization is refineddevelopment of soliton theory. In a suitable asymptotic
and the scheme converges. A more troubling aspect of thelimit, the KdV equation also describes weakly nonlinear
phenomenon becomes apparent if the dimension of thewater waves but in shallow water; Benjamin’s instabilities
homoclinic manifold is increased. In this case temporalare therefore not observed in the KdV equation. The
instabilities and chaos are excited by very small perturba-asymptotic equation governing the one-dimensional slow
tions, even on the order of roundoff error [18]. Thesemodulation of periodic wavetrains (such as the Stokes
instabilities persist as the mesh is refined and cannot bewave) in deep water is the nonlinear Schrödinger (NLS)
detected by monitoring the conserved quantities; i.e., theequation. It is the NLS equation where one indeed encoun-
temporal evolution of the numerical solution remains un-ters the instabilities similar to those discovered by Ben-
predictable even if all the conserved quantities are welljamin.
preserved (by employing a very fine grid). The chaos per-Benjamin observed the instability through a linearized
sists even if a completely integrable (in the spatial variable)analysis of the Euler equations; similarly, a linearized anal-
scheme is employed. The reason being that for a largeysis of the NLS equation shows that a number of low
number of unstable modes the initial values turn out tofrequency modes (side bands) may become unstable. The
be extremely close, e.g., exponentially close, to homoclinicexact number of unstable modes is determined by the am-

plitude of the carrier wave. Since the NLS equation is manifolds. Consequently, based on these observations, we
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conclude that numerical, analytical, and laboratory studies
qt 5

dH
dp

, pt 5
2dH

dq
. (2)of the Stokes wave on deep water require further attention.

We also believe that both homoclinic structures (by mea-
suring flows on both sides of the ‘‘separatrix’’) and the with Hamiltonian,
behavior we have already observed numerically [13, 2, 18]
should be observable in the laboratory. H(p, q) 5 EL

0
[Asp2 1 As(qx)2 1 1 2 cos q] dx, (3)

The difficulties encountered in solving the NLS equation
numerically are not unique to this equation. We believe

where q :5 u and p :5 ut are the conjugate variables. Inthat (i) the instabilities in the modified KdV equation ob-
this context, integrable means that there is a sufficientlyserved by Fornberg and Whitham [12] are of the same
large number (infinity) of conserved quantities so that anature and (ii) the homoclinic structures associated with
transformation to action-angle variables can be achieved.the sine–Gordon equation [10] have a marked effect on
However, there are special solutions where the mappingnumerical studies of the sine–Gordon equation. A previ-
to action-angle variables becomes singular—the so-calledous study [14] noted some of the difficulties involved in
homoclinic structures. As mentioned in the Introduction,solving the sine–Gordon equation numerically if initial
they are crucial in numerical studies and can be describedvalues are chosen in the proximity of homoclinic manifolds.
in elementary terms.The subtleties involved in solving the sine–Gordon

equation numerically, are strikingly illustrated by the use
2.1. A Linearized Analysisof a doubly discrete (space and time) completely integrable

discretization of the sine–Gordon equation. One might First we show that there are exponential instabilities
expect it to be a very efficient numerical scheme—it is associated with some solutions of the sine–Gordon equa-
local and explicit and it has exact N soliton, quasi-periodic tion. In Section 5 these instabilities are related to double
N phase, and homoclinic solutions. Our experience with points of the nonlinear spectrum; i.e., the instabilities are
the integrable discretization of the NLS equation (see [1, associated with homoclinic orbits.
13, 18]) also indicates the usefulness of such integrable Assuming that
discretizations. In view of this, it might be surprising that
the doubly discrete integrable discretization of the sine– u(x, t) 5 f 1 «(x, t), u«(x, t)u ! 1,
Gordon equation admits an instability. More specifically,
we choose initial values that at first glance appear to be with
‘‘safe,’’ i.e., close but not too close to a homoclinic mani-
fold. We observe that high frequency oscillations develop

«(x, t) 5 «̂n(t) exp(ien x) 1 «̂*n (t) exp(2ienx), en 5 2fn/L,on the grid scale. This unexpected behavior has all the
characteristics of sensitive dependence on the initial values.

n an arbitrary integer, it follows thatA careful perturbation analysis shows that the initial values
are exponentially close to a homoclinic submanifold where
sensitive dependence on the initial values is expected. We d 2

dt 2 «̂n 1 g2
n«̂n 5 0 (4)

also show that the instability associated with the integrable
discretization depends on whether an even or an odd num-

(and similarly for «̂*n (t)), where g2
n 5 e2

n 2 1. It is clearber of grid points are used. Our understanding of the be-
that the nth mode grows exponentially, ifhavior of the double discrete integrable scheme is based

upon analysis and is supported by extensive numerical ex-
0 # e2

n , 1. (5)periments.

2. ANALYTICAL PROPERTIES OF THE It is worth pointing out that the zeroth mode, n 5 0, is
SINE–GORDON EQUATION the most unstable in the sense that it grows at the fastest

rate (it is therefore the dominant mode).
We study the sine–Gordon equation, It is convenient to rewrite (4) as a system

utt 2 uxx 1 sin u 5 0, (1)
d
dtS«̂n

ĥn
D5S 0 1

1 2 e2
n 0

DS«̂n

ĥn
D .

together with periodic boundary conditions, u(x, t) 5
u(x 1 L, t).

The sine–Gordon equation is a completely integrable, The eigenvectors, (1, l)T, with l 5 6 Ï1 2 e2
n of this

system translate into an initial condition given byinfinite dimensional Hamiltonian system; see, e.g., [1, 3],
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FIG. 1. (a) Outside and (b) inside the homoclinic orbit.

u(x, 0) 5 f 1 «0 cos(enx)
(6)

2.2. An Analytic Expression for the Homoclinic Orbit

A particularly straightforward way of obtaining exactut(x, 0) 5 «0Ï1 2 e2
n cos(enx).

analytical expressions for the homoclinic orbits suggested
above is through Hirota’s method [16] (see also [2]). Substi-The simplest case is obtained from the choice n 5 0, i.e.,
tutingno x-dependence. Let us consider the initial condition,

u 5 4 tan21[g(x, t)/f(x, t)]
u(x, 0) 5 f 1 «0

into the sine–Gordon equation (1), one arrives at the bilin-ut(x, 0) 5 «0(1 1 p),
ear equations

where p is a small number. In fact this is close to the (D2
x 2 D2

t )g · f 5 gf
(7)homoclinic orbit of the pendulum equation (an ODE);

(D2
x 2 D2

t )(g · g 2 f · f ) 5 0,p , 0 leads to an ‘‘oscillating,’’ and p . 0 to a ‘‘rotating,’’
solution (i.e., the pendulum goes ‘‘over the top’’). The

wherechoice p 5 0 corresponds to the homoclinic orbit u(t) 5
f 1 4 arc tan[exp(t 1 c)], with p , 0, p . 0 on either side
of the homoclinic orbit.

A more general situation is illustrated numerically by
choosing L 5 2Ï2f, e 5 2f/L, and initial conditions

u(x, 0) 5 f 1 0.1 cos(ex)

ut(x, 0) 5 (0.1 1 p)Ï1 2 e2 cos(ex),

where p is again a small number. Figures 1a, b show the
solutions with (a) p 5 10.01 and (b) p 5 20.01. Different
qualitative behavior is readily observed—the temporal pe-
riod shown in Fig. 1a is about twice that of Fig. 1b—this
suggests, which we confirm below, that the orbit initiated
by (6) (with p 5 0) forms a separatrix, i.e., another orbit
homoclinic to f, this time with a spatial structure (cf. Fig. 2).

In the next section we find explicit expressions for these
FIG. 2. A homoclinic orbit.homoclinic orbits.
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D2
x g · f :5 gxx f 2 2gx fx 1 gfxx . one due to Bobenko et al. [8, 9] (used in their important

and elegant study of discrete geometrical surfaces).

For example, choosing
3.1. An Integrable Discretization

The basic idea is to discretize the bilinear form, (7).g(x, t) 5 b1 cos(p1t 1 c1)
Hirota [16] used

f(x, t) 5 b2 cosh(p2x 1 c2),

(cosh hDx 2 cosh hDt)g · f
one obtains the breather solution

5 Af h2(cosh hDx 1 cosh hDt)g · f (10)

(cosh hDx 2 cosh hDt)(g · g 2 f · f ) 5 0,
u(x, t) 4 tan21 Fb1

b2
cos(p1t 1 c1) sech(p2x 1 c2)G ,

where
where

exp(«Dx 1 dDt)a(x, t) · b(x, t)
p2

1 1 p2
2 5 1, b2

1 p2
1 5 b2

2 p2
2 . (8) :5 a(x 1 «, t 1 d)b(x 2 «, t 2 d).

The symmetry, Note that (10) is a discrete analogue of the continuous
bilinear form (7). A completely integrable discretization

x R t, t R x, u R f 1 u, is obtained by substituting

leads directly to the following family of homoclinic orbits f(x, t) 5 exp(Afr(x, t)) cos(Aff(x, t))
(see also [10]):

g(x, t) 5 exp(Afr(x, t)) sin(Aff(x, t))

u(x, t) 5 f 1 4 tan21

(9)
into (10) and eliminating r from the results leads to

Fb1

b2
cos(p1x 1 c1) sech(p2t 1 c2)G .

(1 2 Afh2) tan Af(f(x 1 h, t) 1 f(x 2 h, t))
(11)

5 (1 1 Afh2) tan Af(f(x, t 1 h) 1 f(x, t 2 h)).
One can think of each p1 5 2fn/L, n an integer such that
p2

1 , 1 (in order to satisfy (8)) as a separate homoclinic
This scheme is special; it is a completely integrable discreti-orbit. Figure 2 shows the situation for n 5 1.
zation of the sine–Gordon equation, where f(x, t) denotesSeveral remarks are in order:
the approximation of u(x, t).

• the case p1 5 0 reduces to the well-known homoclinic It is sometimes more convenient to use alternative
orbit of the pendulum equation; forms of Eq. (11). Making use of the identity, tan21 x 5

(1/2i) ln[(1 1 ix)/(1 2 ix)], it follows after some manipula-• the expression (9) describe the simplest family of ho-
tion that (11) may be written asmoclinic orbits to the fixed point u 5 f. Much more compli-

cated structures homoclinic to periodic orbits etc. exist (see
[10]) and can also be generated from (7) by writing a As(fn11

m 1 fn21
m ) 5 As(fn

m21 1 fn
m11) 1 i ln

(12)suitable ansatz (see also (22) below);

• there is a one-to-one correspondence between the F 1 1 Afh2 exp Asi(fn
m11 1 fn

m21)
1 1 Afh2 exp As(2i)(fn

m11 1 fn
m21)G ,

number of unstable modes given by (5) and the number
of homoclinic orbits given (implicitly) by (8).

where fn
m :5 f(mh, nh). The identity arg(z) :5 u 5

(1/2i) ln (z/z*), where z 5 r exp(iu), leads to3. A DOUBLY DISCRETE, COMPLETELY
INTEGRABLE DISCRETIZATION

As(fn11
m 1 fn21

m ) 5 As(fn
m21 1 fn

m11) 1 2i arg
(13)In this section we consider a doubly discrete, completely

[1 1 Afh2 exp Asi(fn
m11 1 fn

m21)].integrable discretization due to Hirota [16] and a related
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Alternatively, substituting
f(x, t) 5 4 tan21 Fb1

b2
cos(p1t 1 c1) sech(p2x 1 c2)G , (20)

Qn
m 5 exp(Asifn

m) (14)

where
into (12), we obtain

(1 2 Afh2) cosh p2h 5 (1 1 Afh2) cos p1h

Qn11
m Qn21

m 5
Qn

m11Qn
m21 1 Afh2

1 1 Afh2Qn
m11Qn

m21
. (15) and

b2
2 sinh2 p2h 5 b2

1 sin2 p1h.All these different forms represent second-order accurate
discretizations on the sine–Gordon equation (1), when

Note that in the limit h R 0 these conditions reduce toused as a numerical scheme.
the analytical ones, (8). Using the symmetryIt is possible to rewrite Hirota’s scheme in the form used

by Bobenko et al. [9] by the following change of variables:
x R t, t R x, f R f 1 f,

f(1)
m11,n 5 2As(fn

m11 1 fn
m21)

(16) one obtains the homoclinic orbit,
f(2)

n,n21 5 As(fn11
m 1 fn21

m ).

f(x, t) 5 f 1 4 tan21

(21)In terms of the new variables Hirota’s equation (13) be-
comes Fb1

b2
cos(p1x 1 c1) sech(p2t 1 c2)G .

f(2)
m,n21 5 2f(1)

m11,n 1 2i arg[1 1 Afh2 exp(2if(1)
m11,n)]. (17)

• It is remarkable that the discrete homoclinic orbit has
the same form as the analytical one, apart from a phaseIf we now use this equation to eliminate f(2)

m,n from the
shift.identity
More complicated homoclinic manifolds can also be ob-
tained and are best derived from the N soliton solution off(1)

m11,n11 1 f(2)
m11,n21 1 f(1)

m11,n21 1 f(2)
m21,n21 5 0,

(11). It is not difficult to see that the N soliton solution
given by Hirota [16] in light cone coordinates is written inand writing fn

m instead of f(1)
m,n, we arrive at

laboratory coordinates,

fn11
m 1 fn21

m 2 fn
m21 2 fn

m11 5 2i arg

[1 1 Afh2 exp(ifn
m11)] (18) f 1 ig 5 O

(e50,1)
expFO(N)

j.k
(Ajk 1 if)ej ek

(22)1 2i arg[1 1 Afh2 exp(ifn
m21)].

1 ON
j51

ej(hj 1 i Asf)G ,
Because of the intimate relationship between the schemes
(11) and (18), they share the same properties. Thus, from

wherenow on we concentrate on Hirota’s form of the integrable
discretization, (11) or (13).

hj 5 Pj x 1 Vj t 1 const.
3.2. Homoclinic Orbits of the Integrable Discretization

(1 2 Afh2) cosh Pj h 5 (1 1 Afh2) cosh Vj h
We proceed to construct several special solutions for

Hirota’s scheme (11). Following a similar procedure as in exp Ajk 5
cosh(Pj 2 Pk)h 2 cosh(Vj 2 Vk)h
cosh(Pj 1 Pk)h 2 cosh(Vj 1 Vk)hthe analytical case, first assume that in (10),

and o(e50,1) indicates the summation over all possible com-g(x, t) 5 b1 cos(p1t 1 c1)
(19) binations of e1 5 0, 1; e2 5 0, 1; ...; eN 5 0, 1. The N

f(x, t) 5 b2 cosh(p2x 1 c2) soliton solution is then given by

f(x, t) 5 4 tan21(g/f).and we obtain the breather solution of the discrete system,
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Next we construct an M breather solution by taking
N 5 2M, P2n21 5 P2n 5 P̃n, V2n21 5 2V2n 5 iṼn, n 5
1, ..., M. The M homoclinic solution is then obtained from
the M breather solution by interchanging space and time
variables as before and letting f R f 1 f.

In order to illustrate the procedure let us choose N 5
2; we should recover the single homoclinic solution (21).
In this case we have

h1 5 Px 1 iVt 1 c1 1 c2 , h2 5 Px 2 iVt 1 c1 2 c2 ,

and

exp(A21) 5
sin2 Vh
sinh2 Ph

,

where c1, c2 are arbitrary constants. It now follows in a FIG. 3. The integrable discretization.
straightforward way that the breather solution is given by

f 5 4 tan21[exp(2A21) cos(Vt 1 c2 ) sech(Px 1 AsA21 1 c1 )], rated by the high frequency oscillations, as shown in Fig. 4
(we now use «0 5 0.1).

which is the same as what we had in (20). The single However, there are brief windows in time when the
homoclinic orbit (21) is obtained by using the symmetry initial values are approximately recovered. One such win-
relation above (21) and redefining the constants (p1 5 dow between t 5 450 and t 5 550 (with «0 5 0.1) is shown
V, p2 5 P, etc.). in Fig. 5.

In the next section we illustrate the qualitative behavior For N even, as used in the previous numerical experi-
of the integrable discretizations (a more detailed study of ments, the presence of the oscillations, as well as windows
its numerical properties is given in [5]). of stability, are easily explained. Note from (11) that

fn11
m only depends on fn

m21, fn
m11, and fn21

m ; there is no
3.3. Qualitative Numerical Behavior contribution from fn

m. Assuming that N is even, we specify
initial values, f0

m, m 5 1, 3, ..., N 2 1, and f1
m, m 5 2,Consider the initial values

4, ..., N. Together with (11), these values completely deter-
u(x, 0) 5 f 1 «0 cos(ex), ut(x, 0) 5 0, (23)

with e 5 2f/L and L 5 2Ï2f. From the earlier discussion
(cf. (5)), this corresponds to two unstable modes (one in
addition to the unstable n 5 0 mode). Although these
values are close to the homoclinic orbit they are, appar-
ently, not too close; i.e., (6) suggests that the initial values
(23) are a distance «0 from the homoclinic orbit which is
well outside numerical errors (actually we will show that
these initial values are, in fact, extremely close to the homo-
clinic manifold).

The result of integrating (11) over 200 time units using
N 5 64 and «0 5 0.05 is shown in Fig. 3. Note the homoclinic
crossings when the solution is translated through a multiple
of 2f, as well as the oscillations on a grid scale. Neither
the homoclinic crossings nor the oscillations are expected
for initial values that are close, but not too close, to a
homoclinic orbit. Although the oscillations apparently only
appear at regular intervals (when the solution is in the
vicinity of f), this regularity does not persist—if one inte- FIG. 4. The ‘‘saturation’’ of the instability between t 5 300 and t 5

400 («0 5 0.1).grates for an even longer time the solution becomes satu-
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and disappears at regular intervals. Figure 9 shows the
same separation as in Fig. 6. However, in this case the two
components do not satisfy the required boundary condi-
tions—separately they are not solutions of the problem.

3.4. Linearized Stability

After the discussion of the previous section it should
come as no surprise to learn that the integrable scheme is
linearly unstable. Let us briefly return to the case N even.
As a consequence of the separation between the even and
odd components of the solution it follows that whenever
rn

m is a solution of the integrable system (11), then

fn
m 5 (21)m1nrn

m (24)

is also a solution. Assume for a moment that the low modes
of rn

m are unstable, i.e., exponentially fast growing, possibly
as a consequence of the linearly unstable modes of theFIG. 5. A window of stability between t 5 450 and t 5 550.
continuous sine–Gordon equation which it approximates.

mine the solution for all times. However, we may also
specify the values, f0

m , m 5 2, 4, ..., N, and f1
m, m 5 1,

3, ..., N 2 1 which, together with (11), again completely
determine the solution at all times. We will refer to the
two solutions as the even and odd components.

Although the two solutions are computed on the same
grid, they evolve completely independently of each other
and, if they are plotted on the same graph, any separation
of the trajectories followed by the two components, results
in the type oscillations we saw in Figs. 3 and 4. The window
of stability in Fig. 5 occurred because the two solutions
visited the same region of phase space during that time.
Figure 6 again shows the solution of Fig. 4, but now with
the two components separated. No oscillations are ob-
served and it is clear that the two components follow differ-
ent trajectories.

Figure 7 shows the modulus of their Fourier transforms,
but with the zeroth mode removed. One cannot see any
difference in the figure. The differences observed in Fig. 6
are all in the zeroth mode, i.e., the two components differ
in the way they translate through 2f. Said differently, they
differ in the way they cross the homoclinic orbit.

For the discussion above, we assumed N to be even.
For N odd, the situation is different, in this case the two
components are coupled through the boundary condi-
tions—we do not have two solutions that develop sepa-
rately any more. However, the solution again develops
rapid oscillations. Using the same initial values as before,
the solution for N 5 63 is shown in Fig. 8 between t 5 400
and t 5 500. Note that there is no indication of a saturation
by a high frequency oscillation—since the two components
are coupled through the boundary conditions, they are not

FIG. 6. The even and odd components of the solution shown in Fig. 4.allowed to separate completely and the instability appears
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Then it is the corresponding high frequency modes of
fn

m in (24) that are unstable. We proceed with a detailed
linearized (von Neumann) stability analysis of the discreti-
zation (11).

Linearizing around f 5 f, the following linear partial
difference equation is obtained:

(fn11
j 2 2fn

j 1 fn21
j )/h2 2 (fn

j21 2 2fn
j 1 fn

j11)/h2 (25)

2Af(fn11
j 1 fn21

j 1 fn
j11 1 fn

j21) 5 0.

Assuming that fn
j 5 r n exp(ielhj) and h 5 L/N, where

el 5 2fl/L, l 5 2AsN, ..., AsN 2 1, and N is the total number
of grid points in the interval (0, L), it follows that

r2 2 (2/a) cos(elh)r 1 1 5 0, (26)

where

a 5 (1 2 Afh2)/(1 1 Afh2). (27)

FIG. 7. The Fourier transforms of the two solutions shown in Fig. 6.
The zeroth Fourier mode is removed.

FIG. 8. The integrable discretization: N 5 63, 400 # t # 500. FIG. 9. The even and odd components of the solution shown in Fig. 8.
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The stability condition, ur u # 1 becomes discretization is linearly unstable in the vicinity of the ho-
moclinic orbit. For N even the instability may be removed
by separating the odd and even components. For N odd(1/a2) cos2(elh) # 1. (28)
this is not possible—the instability cannot be removed.

In this section we have established that in certain regionsSince a2 , 1, it is easy to see that stability condition (28)
is violated by low wave numbers near elh 5 0 and high of phase space, the integrable discretization depends in a

sensitive way on the initial values and that the sensitivitywave numbers near elh 5 6f. In order to describe the
unstable wave numbers more precisely, we note from (28) can also be characterized as a linear instability, i.e., we

have established that there is a sensitivity. In the nextthat the unstable wave numbers satisfy
section we undertake a more detailed investigation of why
there is a sensitivity.(cos(elh) 1 a)(cos(elh) 2 a) . 0. (29)

After some manipulation, where (27) is substituted for a, 4. THE SPECTRAL PROBLEM OF THE
the instability condition becomes SINE–GORDON EQUATION

The sensitivity of the numerical solutions on the initial(1 2 Afh2 tan2(Aselh))(Afh2 2 tan2(Aselh)) . 0. (30)
data was clearly illustrated by the ‘‘instabilities’’ encoun-
tered with the integrable discretization—despite only smallThus, all low wave numbers are unstable which satisfy

the condition, differences in the initial values, the even and odd compo-
nents of the solution follow different trajectories. We now
proceed to decribe this sensitivity on the initial values intan2 Aselh , Afh2, (31)
more detail.

The difficulties encountered by our numerical experi-as well as all high wave numbers satisfying
ments are caused by peculiarities of the infinite dimen-
sional phase space of the sine–Gordon equation. The un-tan2(Aselh) . 1/(Afh2). (32)
derlying homoclinic manifolds have proven to be very
sensitive to the perturbations induced by numericalThe low wavenumber instability (31) is not surprising—

assuming uelh u ! 1, it becomes schemes; even the completely integrable, doubly discrete
scheme displays a sensitive dependence on initial values,
and in a forthcoming paper [5] we investigate the behavior(el)2 , 1 1 O(h2),
of different numerical schemes in detail.

Exponential instabilities are associated with homoclinicwhich is consistent with the continuous analogue. There-
fore, condition (31) is the discrete analogue of the analyti- manifolds and one can no longer expect a simple linear

drift in the deviations of the numerical solution. Therefore,cal condition (5). On the other hand, condition (32), satis-
fied by the high wavenumbers near elh 5 6f, has no to assess the timescale on which an accurate numerical

solution can be expected, it is necessary to have an a priorianalytical counterpart—it is a discrete artifact. However,
there is a direct relationship between the high and low estimate of the ‘‘distance’’ of the initial data from the

homoclinic manifolds. Since the geometry of the sine–unstable modes. Assuming that el satisfies (31) (i.e., it is
any one of the low unstable modes), it follows from elh 5 Gordon phase space is characterized in terms of the spec-

trum of an associated linear operator (the L (x)(u, l) opera-2fl/N; i.e., f 2 elh 5 e(As)N2l h (similarly for 2f 1 elh).
This allows us to rewrite the low wavenumber instability tor of the Lax pair (34), (35)), we provide a measure of

the proximity to homoclinic manifolds in terms of suitablecondition (31) in the form
spectral data. Further, for a systematic comparison of the
numerical schemes, we have found that the most relevanttan2 AseAsN2l h . 1/(Afh2). (33)
quantities to monitor are the spectral representation of the
‘‘action’’ variables (the ‘‘main’’ spectrum). By monitoringFor N even a comparison with (32) shows that every unsta-

ble low mode has a corresponding unstable high mode the evolution of the spectrum under the perturbed (numer-
ical) flow we can correlate irregularities in the numerical(recall the discussion at the beginning of this section). For

N odd the situation is a little different. For instance, assume solution to: (i) deviations in the actions, (ii) changes in the
number of instabilities present, and (iii) changes in thethat the low wavenumber mode el (l small) is just on the

edge of the unstable region. Then the high wavenumber phase space associated with the initial data. This enables
one to determine the ability of the schemes to capturemode e(1/2)(N21) lies inside the instability region; i.e., it

is unstable. the global dynamics of the system and to more accurately
interpret the numerical results.This analysis shows that the solutions of the integrable
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The sine–Gordon equation (1) arises as the compatibil- The linear operator is not self-adjoint and the topology
of the spectrum in the complex l plane is determined byity condition of the following linear operators (i.e., we

require that (d 2/dx dt)v 5 (d 2/(dt dx)v) [1, 11], the following:

(i) curves of real L;

(ii) critical points lc,
L (x)(u, l)v :5FA

d
dx

1
i
4

B(ux 1 ut) 1
1

16l
C 2 lIG v 5 0,

d
dl

L(u, l)ul5lc 5 0; (39)(34)

(iii) periodic (antiperiodic) eigenvalues l1 (l2),
L (t)(u, l)v :5FA

d
dt

1
i
4

B(ux 1 ut) 2
1

16l
C 2 lIG v 5 0,

L(u, l)ul5l6 5 62; (40)(35)

(iv) double points ld,
where

L(u, ld ) 5 62,
d

dl
L(u, l)uld 5 0. (41)

A 5S0 21

1 0
D , B 5S0 1

1 0
D ,

Although potentials which have critical points of higher
multiplicity in their spectral data exist, in this study we
restrict our attention to the case of even potentials which

C 5Sexp(iu) 0

0 exp(2iu)
D , I 5S1 0

0 1
D , have only simple or double periodic eigenvalues. Without

further elaboration, as an example we compute the spec-
trum for the spatially and temporally uniform solution,
u(x, t) 5 (f, 0). In this case, system (34) has constantu :5 (u(x, t), ut(x, t)) is the potential, and l [ C denotes
coefficients and is readily solved. The Floquet discriminantthe spectral parameter.
is given byThe solutions of the sine–Gordon equation are charac-

terized in terms of the spectrum of L (x) defined by

L(u, l) 5 2 cos Sl 1
1

16l
D L. (42)

s(L (x)) :5 hl [ CuL (x)v 5 0, uvu bounded ;xj . (36)

Making use of the definitions above, it follows that the
continuous spectrum is given by the entire real axis as wellSince the potential u solves the sine–Gordon equation
as the curve ulu2 5 aQh in the complex plane. The periodicand is of spatial period L, the spectrum is obtained using
spectrum is given byFloquet theory. The fundamental matrix, M(x, x0; u, l),

of the spectral operator (34) is defined by the conditions

lj 5 As Fjf
L

6 !j 2f2

L2 2
1
4G , j integer. (43)

L (x)(u, l)M 5 0, M(x0, x0 ; u, l) 5S1 0

0 1
D (37) Each of these points is a double point embedded in the

continuous spectrum and becomes complex if

and the Floquet discriminant L(u, l) :5 tr M(x0 1 L, x0;
0 # S2fj

L D2

, 1. (44)u, l).
In determining the spectrum of L (x)(u, l), condition (36)

for bounded eigenfunctions yields the following criterion Comparison with (5) reveals a remarkable fact (which is
on the discriminant: also true for the NLS and complex modified KdV equa-

tions): the linearized instability condition (5) is exactly the
same as condition (44) for double points in the complex

s(L (x)) :5 hl [ CuL(u, l) is real and
(38) plane. These double points can split in two ways under

perturbations and we associate these with homoclinic or-22 # L(u, l) # 2j.
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bits. In fact, we have arrived at a special case of an im-
portant result obtained by [10] which relates homoclinic
orbits to complex double points of the spectral problem
of the sine–Gordon equation.

Let us briefly digress from the main discussion of this
section to point out that not all double points in the nonlin-
ear spectrum are associated with homoclinic orbits and/or
instabilities. Consider, for example, the following solution
of the sine–Gordon equation on the infinite line (see, for
example, [1]),

u(x, t) 5 4 tan21[2t sech(x)], 2y , x , y. (45)

It represents a limiting situation between a kink, an anti-
kink, and a breather solution which is reflected by a double
point in its nonlinear spectrum.

Using the initial values,

u(x, 0) 5 0, ut(x, 0) 5 4 sech(x) (46)

with 220 # x # 20 and periodic boundary conditions,
we solve this using the integrable discretization (11) with
N 5 64 and N 5 128. The results are shown in Fig. 10a
and 10b. The oscillations seen in Fig. 10a are again an
indication of a separation of the even and odd components
of the solution. However, in this case a very course grid
is used (note that the spatial interval is much wider in this
case than for the experiments of Section 3.3) and the initial
values for the two components differ substantially. It is
therefore not surprising that they follow different trajector-
ies. When the grid is refined to N 5 128 in Fig. 10b the
difference in initial values for the two components is re-
duced. Since there is not the sensitive dependence on the FIG. 10. Soliton initial values: (a) N 5 64; (b) N 5 128.
initial values, as was the case near a homoclinic orbit, the
trajectories of the two components do not separate on the
time scales considered. Thus, although the initial values

clinic manifold associated with the potential u0(x, t). Forare represented by a double point in the nonlinear spec-
potential, u«(x, t), close to u0(x, t), let the correspondingtrum, there is no exponential growth associated with it and
spectral elements be denoted by l(«)

j . The proximity of u«(x,not the sensitivity on initial values as in the case with
t) to a homoclinic submanifold can be measured byhomoclinic manifolds.

Returning to the main theme of this section, we note
that the question of how to determine the proximity of a min

1#k#N
ul(«)

k 2 lk u ,
quasi-periodic solution to a nearby homoclinic manifold
can most easily be resolved by examining the spectral data.
For a given potential a nearby homoclinic manifold can where the distance is measured along the continuous spec-

trum between l«
k and lk .be obtained by pinching together the pairs of simple eigen-

values along the band of continuous spectrum that they The solutions that we numerically simulate have initial
data within an « neighborhood of u(x, 0) 5 (f, 0); henceare the endpoints of. Under this procedure, the simple

eigenvalues coalesce in double points. If a double point is their spectral configuration can be calculated via perturba-
tion analysis. To simplify the analysis we recall a crucialcomplex, the associated nonlinear mode may be exponen-

tially unstable. (The reader may find it useful to refer to fact—the spectrum is invariant when the potential u(x, t)
evolves under the sine–Gordon flow. Hence we considerFig. 11 below. For instance, note that Fig. 11a is recovered

by closing the gap in the spectrum of Fig. 11b.) Let lj u(x, 0) and suppress the time dependence in the follow-
ing analysis.( j 5 1, N) denote the complex double points of the homo-
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FIG. 11. The nonlinear spectrum: (a) homoclinic orbit; (b) inside the homoclinic orbit; (c) outside the homoclinic orbit.

The initial values (23) we used in our numerical experi-
ments, belong to the class

O(«m) R L (x)v(m)
j 55

2 om21
k50 s(m2k)

j v(k)
j1 2

i
4

q(x)v(m21)
j2

2 om21
k50 s̃ (m2k)

j v(k)
j2 2

i
4

q(x)v(m21)
j1 ,

(50)

u 5 f 1 «u(1)

5 f 1 « cos(enx),
where

ut 5 «Ï1 2 e2
n (1 1 p)eif cos enx,

s(1)
j 5

1
16l(0)

j
Sl

(1)
j

l(0)
j

2 i cos enxD2 l(1)
jwhere en 5 2fn/L (for integer n), f 5 0 for e2

n , 1, f 5
f/2 for e2

n . 1. At the double points of D(l, u), the discrimi-
nant D and the eigenfunctions are analytic functions of u,
so it is natural to assume the perturbation expansion s̃ (1)

j 5
1

16l(0)
j
Sl

(1)
j

l(0)
j

1 i cos enxD2 l(1)
j

lj 5 l(0)
j 1 «l(1)

j 1 «2l(2)
j 1 ...

s(2)
j 5

1
16l(0)

j
S2Sl

(1)
j

l(0)
j
D2

1
l

(2)
j

l(0)
j

1 i
l

(1)
j

l(0)
j

cos enxvj 5 v(0)
j 1 «v(1)

j 1 «2v(2)
j 1 ...,

where
1

cos2enx
2 D2 l(2)

j

vj 5Svj 1

vj 2
D.

s̃ (2)
j 5

1
16l(0)

j
S2Sl

(1)
j

l(0)
j
D2

1
l

(2)
j

l(0)
j

1 i
l

(1)
j

l(0)
j

cos enx

Substituting these expansions into (34) and equating the
various orders of «, we obtain 1

cos2enx
2 D2 l(2)

j

.
O(«0) R L (x)v(0)

j 5 0, (47) .
.

s(m)
j 5 2

1
16l(0)

j
Om
k50

l̃k
j

(2i cos enx)m2k

(m 2 k)!
2 l(m)

j

O(«) R L (x)v(1)
j 55

2s(1)
j v(0)

j1 2
i
4

q(x)v (0)
j2

2s̃ (1)
j v(0)

j2 2
i
4

q(x)v (0)
j1

(48)

s̃ (m)
j 5 2

1
16l(0)

j
Om
k50

l̃k
j

(i cos enx)m2k

(m 2 k)!
2 l(m)

j

and
O(«2) R L (x)v(2)

j 55
2s(1)

j v(1)
j1 2 s(2)

j v (0)
j 1 2

i
4

q(x)v(1)
j2

2s̃ (1)
j v(1)

j2 2 s̃ (2)
j v (0)

j2 2
i
4

q(x)v(1)
j1

(49)
q(x) 5 2en sin enx 1 Ï1 2 e2

n (1 1 p)eif cos enx (51)

. l̃(m)
j 5

2l(m)
j

l(0)
j

1 f(ln
j ), n , m. (52).

.
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The leading order problem yields the spectrum and the general solvability condition assumes the form
eigenfunctions for u(x, t) 5 (f, 0). As already noted, each
element of the periodic spectrum is a double point. We EL

0
(F1 f6

j1 1 F2 f6
j2) dx 5 0. (53)

will be concerned with the splitting of each of these double
points under the « perturbation. At the double points,
l(0)

j (for simplicity, hereafter we use lj , instead of l(0)
j ), The solvability conditions (53) applied to (48) yield the

the eigenspace is two-dimensional and is spanned by the system of equations
eigenfunctions

1T1 T

T T221A1

A225 0,f 6
j 5 exp(6ikj x)S 1

6iD
and the general solution is given by where

v(0)
j 5 A1f1

j 1 A2f2
j ,

T 5 2l(1)
j S1 2

1
16l2

j
Dwhere kj 5 lj 1 1/16lj 5 jf/L.

The eigenvalues are associated with the periodic/antipe-
riodic eigenfunctions of period L. The solvability condition
for the system T6 55iS 1

16lj
2

en 6 i(1 1 p)eif Ï1 2 e2
n

4 D, j 5 n,

0, j ? n.L (x)v 5 F,

with Consequently, the system can be solved nontrivially for
A6 if T1T2 2 T 2 5 0, or

F 5SF1

F2
D

(l(1)
j )2 552

1 2 (1 1 p)2e2if

16
l2

j , j 5 n,

0, j ? n.given by the orthogonality condition

EL

0
(F1w*1 1 F2w*2 ) dx 5 0 At O («), there is a correction only to the double point,

lj ( j 5 n). A specific double point is selected in resonance
with the perturbation in the eigenfunction. The other dou-for all w in the nullspace of the Hermitian adjoint operator,
ble points do not experience an O («) correction.

L H, where
The behavior of the correction l(1)

j ( j 5 n) depends on
whether the double point lj is real or complex,

L H 5310 21

1 0 2 d
dx

2
i
410 1

1 02 (ux 1 ut)

(l(1)
j )2 552

p(2 1 p)
16

l2
j for lj complex, j 5 n,

2
1 1 (1 1 p)2

16
l2

j for lj real, j 5 n,

0, j ? n.

. (54)
1

1
16l*1exp(2iu) 0

0 exp(iu)22 l*I4 .

Noting that the nullspace of L H, at the double points, is
For complex ln , the correction l(1)

n can be real, zero, orspanned by
pure imaginary, depending on the sign of p in the perturbed
potential. For p 5 0, l(1)

n 5 0; hence the perturbation is in
the direction of the homoclinic orbit. For p 5 1, the double1(f6

j1)*

(f6
j2)*2 , point splits into a ‘‘gap’’ in the spectrum along the arc of

ulu2 5 aQh. For p 5 21 the double point splits into a ‘‘cross’’
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along the radius, as shown in Fig. 11. Recall that Figs. 1
and 2 show the corresponding waveforms. B 5

a2A1

2(22kj 1 en)S i

1
DFor real ln, regardless of the sign of p, the perturbation

is imaginary, thus there is only one way for the eigenvalues
to split. ‘‘Gaps’’ cannot appear on the real axis in the

C 5
a2A2

2(22kj 1 en)S i

21
Dspectrum of L (x) (this can also be established by symmetry

arguments). Hence the situation with real double points
is very different from that of complex double points. Split-

D 5
a1A2

2(22kj 2 en)S i

21
Dting of the real double points introduces additional degrees

of freedom into the spatial structure but does not introduce
any exponential instabilities and are therefore not associ-
ated with homoclinic manifolds. and

To examine the higher order corrections to the double
points for which j ? n, we will consider the case of p 5
21. This corresponds exactly to initial data (23). The analy- a6 5

1
16lj

6
en

4
.

sis for the other cases (p 5 0, 1) is analogous. At these
double points, l(1)

j 5 0, so the nonhomogeneous term of
the linear operator simplifies, i.e.,

Returning to the solvability condition at O («2) we obtain
the system

L (x)v(2)
j 55

2s(1)
j v(1)

j1 2 s(2)
j v(0)

j 2
i
4

q(x)v (1)
j2

2s̃ (1)
j v(1)

j2 2 s̃ (2)
j v(0)

j 2
i
4

q(x)v (1)
j1

, (55) S b l(2)
j 2 c

l(2)
j 2 c b

DSA1

A2D5 0, (56)

where now
where

s(1)
j 5

1
16lj

(2 i cos enx)

b 5 52
a1a2

4(22kj 1 en)
1

1
128lj

, j 5 2n,

0, j ? 2n,
s̃ (1)

j 5
1

16lj
(i cos enx)

s(2)
j 5

1
16lj

Sl
(2)
j

lj
1

cos2 enx
2 D2 l(2)

j

c 5

216lj S a2
1

24(2kj 1 en)
1

a2
2

4(22kj 1 en)D2
1
4

1 2 16lj
.

s̃ (2)
j 5

1
16lj

(i cos enx)

Having a nontrivial solution, (56) implies

s(2)
j 5

1
16lj

Sl
(2)
j

lj
1

cos2 enx
2 D2 l

(2)
j .

l(2)
j 5 c 6 b.

In order to apply the solvability condition to L (x)v(2)
j 5

Consequently only the double point lj ( j 5 2n) experiences
F we need the O(«) correction to the eigenfunctions,

an «2-splitting of 2a. The other double points, j ? n, 2n,v(1)
j . We find these to be given by

experience just a translation of l(2)
j at O («2).

At O («m ), to examine the splitting of the double points
v(1)

j 5 Aei(kj1en)x 1 Bei(kj2en)x 1 Cei(2kj1en)x 1 De2i(kj1en)x, lj , j ? n, 2n, ..., (m 2 1)n, note that the general form of
the correction to the eigenfunction, v(m21)

j , is
where

v(m21)
j 5 A(m21)ei(kj1(m21)en)x 1 B(m21)ei(kj2(m21)en)x

1 C(m21)ei(2kj1(m21)en)x 1 D(m21)e2i(kj1(m21)en)x
A 5

a1 A1

2(22kj 2 en)S i

1
D

1 v(m22)
j ,
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where A(m21), B(m21), C(m21), D(m21) are column vectors. puted on the same grid. Since the initial values for the
two solutions are near each other, the separation is anThe solvability condition at O(«m) yields a system of the

general form indication of a sensitive dependence on initial values. In
fact, our perturbation analysis shows that the initial values
used in our numerical experiments are exponentially close
to a homoclinic submanifold where sensitive dependence1 â1 l(m)

j

l(m)
j â2 2SA1

A2
D5 0, (57)

on initial values is expected. Therefore we explain this is
a nonlinear instability; two solutions, starting from slightly
different initial values, follow very different trajectories.where
Note that due to the sensitivity it is not possible to decide
which one is the more acceptable solution.

If N is odd, the two even and odd components of thea6 5 5a6
m, j 5 mn,

0, j ? mn, solution are coupled through the boundary conditions. In
this case one can think of a separation of the solution into
even and odd components, but now on a grid twice as long,

where a6
m is a function of the coefficients of the eigenfunc- i.e., on a 2N grid. However, on the original N grid the

tions at the previous iterate. two components do not satisfy the prescribed boundary
For (57) to have a nontrivial solution we require conditions and do not approximate the continuous solu-

tion. Consequently, the integrable discretization allows ex-
act solutions that have no counterpart in the continuous

lm
j 5 56 Ïâ1

mâ2
m, j 5 mn,

0, j ? mn.
sine–Gordon equation.

Let us point out that spurious solutions are also allowed
by the Ablowitz–Ladik discretization of the nonlinear
Schrödinger equation; see, for example [4, 17]. However,Thus, we arrive at the following general result: Only the
in this case the conservation laws do not permit high fre-double points, lj , which are m-fold multiples of the funda-
quency oscillations to develop from smooth initial valuesmental mode ( j 5 mn) will experience an «m-splitting. The
such as observed for the doubly discrete, integrable discret-splitting distance of the remaining double points ( j ? mn)
ization of the sine–Gordon equation; see, for example, [6].is beyond all orders in «!

Finally we point out that, apart from providing a betterWhen there is more than one complex double point in
understanding of the structure of phase space, the nonlin-the initial spectral configuration and the initial condition
ear spectrum also provides a useful description of the quali-contains a perturbation of the mode, e1 , for example, the
tative properties of the different numerical schemes. Thismode e0 is not affected with the result that this initial value
can be used as a diagnostic tool to compare the qualitativeis ‘‘exponentially close’’ to a homoclinic submanifold. This
performance of different numerical schemes in a quantita-is exactly the situation with the initial data (23) used in
tive manner. This idea will be fully developed in a subse-our numerical experiments—it splits the first double point
quent paper [5].at l 5 if/4 into an O(«) gap. However, the zeroth double

point on the imaginary axis (which corresponds to the most
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